MARK SCHEME for the May/June 2012 question paper

for the guidance of teachers

9702 PHYSICS

9702/42

Paper 4 (A2 Structured Questions), maximum raw mark 100

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• Cambridge will not enter into discussions or correspondence in connection with these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2012 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

Р	Page 2		Mark Scheme: Teachers' version Syllabu	S	Paper	
			GCE AS/A LEVEL – May/June 2012 9702		42	
Sectio	on A					
1 (a)	S	quare o	portional to product of masses and inversely <u>proportional to</u> f separation (<i>do not allow square of distance/radius</i>) pint masses <i>or</i> separation ⓐ size of masses	M1 A1	[2]	
(b) (i		2π / (27.3 × 24 × 3600) or 2π / (2.36 x 10 ⁶) 2.66 × 10 ⁻⁶ rad s ⁻¹	M1 A0	[1]	
	(ii	, M = =	= $r^3 \omega^2$ or $GM = v^2 r$ (3.84 × 10 ⁵ × 10 ³) ³ × (2.66 × 10 ⁻⁶) ² / (6.67 × 10 ⁻¹¹) 6.0 × 10 ²⁴ kg cial case: uses $g = GM/r^2$ with $g = 9.81$, $r = 6.4 × 10^6$ scores max	C1 M1 A0 1 mark)	[2]	
(c)) (i) grav	. force = $(6.0 \times 10^{24}) \times (7.4 \times 10^{22}) \times (6.67 \times 10^{-11})/(3.84 \times 10^{8})^{2}$ = 2.0 × 10 ²⁰ N (<i>allow 1 SF</i>)	C1 A1	[2]	
	(ii) eithe	$\Delta E_{\rm P} = Fx \text{ because } F \text{ constant as } x \text{! radius of orbit}$ $\Delta E_{\rm P} = 2.0 \times 10^{20} \times 4.0 \times 10^{-2}$ $= 8.0 \times 10^{18} \text{ J} \text{ (allow 1 SF)}$	B1 C1 A1	[3]	
		or	$\Delta E_{\rm P} = GMm/r_1 - GMm/r_2$ Correct substitution 8.0 × 10 ¹⁸ J ($\Delta E_{\rm P} = GMm/r_1 + GMm/r_2$ is incorrect physics so 0/3)	C1 B1 A1		
2 (a)		0,	= $\frac{1}{2}m\omega^2 a^2$ and $\omega = 2\pi f$ = $\frac{1}{2} \times 37 \times 10^{-3} \times (2\pi \times 3.5)^2 \times (2.8 \times 10^{-2})^2$ = 7.0 × 10 ⁻³ J = 3.5 shown as 7π)	C1 M1 A0	[2]	
	С	orrect s	$v^{2} mv^{2}$ and $v = r\omega$ substitution $v = 7.0 \times 10^{-3} \text{ J}$	(C1) (M1) (A0))	
(b	- 1/2 X	= a/√2 = 2.0 c	$x^{2} - x^{2}$) = $\frac{1}{2}m\omega^{2}x^{2}$ or $E_{\rm K}$ or $E_{\rm P}$ = 3.5 mJ = 2.8 / $\sqrt{2}$ or $E_{\rm K} = \frac{1}{2}m\omega^{2}(a^{2} - x^{2})$ or $E_{\rm P} = \frac{1}{2}m\omega^{2}x^{2}$ m $\omega = 7.0$ mJ scores 0/3)	C1 C1 A1	[3]	
	A		k = 17.9 $E = \frac{1}{2} kx^2$ x = 2.0 cm	(C1) (C1) (A1)		

Pa	Page 3		Mark Scheme: Teachers' version	Syllabus	Paper
			GCE AS/A LEVEL – May/June 2012	9702	42
(c)	(i)	grap	h: horizontal line, <i>y</i> -intercept = 7.0 mJ with end-point +2.8 cm and –2.8 cm	s of line at B	1 [1]
	(ii)	grap	 reasonable curve with maximum at (0,7.0) end-points of line at (-2. and (+2.8, 0) 	B 8, 0) B	
			anu (+2.0, 0)	D	۱ <u>[</u> ۲]
	(iii) (grap Allow	 h: inverted version of (ii) with intersections at (–2.0, 3.5) and (+2.0, 3.5) marks in (iii), but not in (ii), if graphs K & P are not lab 	M A pelled)	
(d)	<u>gra</u>	vitatio	nal potential energy	В	1 [1]
3 (a)			otential energy and kinetic energy of atoms/molecules e to random (distribution)	/particles M A	
(b)	(i)	mole no cl	ttice structure is 'broken'/bonds broken/forces betwee cules reduced (not molecules separate) hange in kinetic energy, potential energy increases nal energy increases	n B M A	1
	(ii)		er molecules/atoms/particles move faster/ < <i>c</i> ² > is inclusive kinetic energy increases with temperature (increases and energy increases and energy increases)	-	1
4 (a)	(i)		decreases, energy decreases/work got out (due to) <u>ction</u> so point mass is negatively charged	M A	
	(ii)	elect	ric potential energy = charge × electric potential ric field strength is potential gradient strength = gradient of potential energy graph/charge	B B A	1
(b)	gra (foi	dient : r < ±0.3	Irawn at (4.0, 14.5) = 3.6 × 10 ⁻²⁴ 3 <i>allow 2 marks, for <</i> ±0.6 <i>allow 1 mark</i>) ngth= (3.6 × 10 ⁻²⁴) / (1.6 × 10 ⁻¹⁹)	B A	
			= 2.3×10^{-5} V m ⁻¹ (allow ecf from gradient value) at solution for gradient leading to 2.3×10^{-5} Vm ⁻¹ score	A s 1 mark only)	1 [4]

	Page 4		Mark Scheme: Teachers' version			Paper	
		-	GCE AS/A LEVEL – May/June 2012	Syllabus 9702		42	
5	(a)	current/v	raight conductor carrying current of 1A vire normal to magnetic field density 1T,) force per unit length is 1Nm ⁻¹		M1 M1 A1	[3]	
	(b)	by N	jinally) downward force on magnet (due to current) lewton's third law (allow "N3") ard force on wire		B1 M1 A1	[3]	
		B =	BIL × 10 ⁻³ × 9.8 = B × 5.6 × 6.4 × 10 ⁻² 0.066T (need 2 <i>SF</i>) nissing scores 0/2, but g = 10 leading to 0.067T scores 1,	/2)	C1 A1	[2]	
	(c)	either c	ding is 2.4√2 g hanges between +3.4 g and <i>—</i> 3.4 g btal change is 6.8 g		C1 A1	[2]	
6	(a)	between plates an adjustab until oil o mg = q > symbols oil drop	explained viewed through microscope	(1) (1) (1)	B1 B1 B1 B1 B1		
			nined from terminal speed of drop (when p.d. is zero) extras, 1 each)	(1)	B2	[7]	
	(b)	3.2 × 10	⁻¹⁹ C		A1	[1]	
7	(a)	minimun	n energy to remove an electron from the metal/surface		B1	[1]	
	(b)	gradient h = 4.15 = 6.6	= 4.17×10^{-15} (allow $4.1 \rightarrow 4.3$) $5 \times 10^{-15} \times 1.6 \times 10^{-19}$ or $h = 4.1$ to 4.3×10^{-15} <u>eVs</u> $\times 10^{-34}$ Js		C1 A1 A0	[2]	
	(c)	graph:	straight line parallel to given line with intercept at any higher frequency intercept at between 6.9 × 10 ¹⁴ Hz and 7.1 × 10 ¹⁴ Hz		B1 B1	[3]	

	Page 5		Mark Scheme: Teachers' version	Syllabus	Paper		
			GCE AS/A LEVEL – May/June 2012	9702	42		
8	dif (al	 (a) <u>nuclei</u> having same number of protons/proton (atomic) number different numbers of neutrons/neutron number (allow second mark for nucleons/nucleon number/mass number/atomic mass if made clear that same number of protons/proton number) 					
		= ln 2 = 0.69	ity of decay per unit time is the decay constant / $t_{\frac{1}{2}}$ 93 / (52 × 24 × 3600) 4 × 10 ⁻⁷ s ⁻¹	C C A	1		
	(c) (i)	7.4 × A ₀ =	$A_0 \exp(-\lambda t)$ × 10 ⁶ = $A_0 \exp(-1.54 \times 10^{-7} \times 21 \times 24 \times 3600)$ 9.8 × 10 ⁶ Bq <i>rnative method uses 21 days as 0.404 half-lives</i>)	C A			
	(ii)	A = . mas	λN and mass = $N \times 89 / N_A$ s = (9.8 × 10 ⁶ × 89) / (1.54 × 10 ⁻⁷ × 6.02 × 10 ²³)	С	1		
			$= 9.4 \times 10^{-9} g$	А	1 [2]		

	Page 6			Mark Scheme: Teachers' version GCE AS/A LEVEL – May/June 2012	Syllabus 9702	Paper 42	
Sec	ction	в		/			
9	(a)		zero infin infin infin	ite input impedance/resistance output impedance/resistance ite (open loop) gain ite bandwidth ite slew rate r, one mark each)	B4	4 [4]	
	(b)	grap		square wave 180° phase change amplitude 5.0 V	M A´ A´	l	
	(c)	diod diod	es c es ic	ymbol for LED onnected correctly between V _{OUT} and earth lentified correctly case: if diode symbol, not LED symbol, allow 2 nd and 3	M A´ rd marks to be so	 [3]	
10	(a)	-	abso scat refle	m is divergent/obeys inverse square law orption (in block) tering (of beam in block) ction (at boundaries) <i>sensible suggestions, 1 each</i>)	B2	2 [2]	
	(b)		I_0/I	= $I_0 \exp(-\mu x)$ = $\exp(0.27 \times 2.4)$ = 1.9	C ²		
		(ii)		= exp(0.27 × 1.3) × exp(3.0 × 1.1) = 1.42 × 27.1 = 38.5	C ² A ²		
	(c)	eithe or		much greater absorption in bone than in soft tissue $I_{\rm o}/I$ much greater for bone than soft tissue	B ²	[1]	
11	(a)	(i)	loss	of (signal) power	Bŕ	I [1]	
				anted power (on signal) is random	M A´		
	(b)			I, only the 'high' and the 'low' / 1 and 0 are necessary between 'highs' and 'lows' caused by noise not require	M ed A		
	(c)			on = $10 \log(P_2 / P_1)$	C	1	
		or	-	$195 = 10 \log({2.4 \times 10^{3}} / P)$ -195 = 10 lg(P / 2.4 × 10 ³) < 10 ⁻¹⁷ W	C A		

	Page	7	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – May/June 2012	9702	42	
12	(a) (i)	mod	lulator	E	31 [[1]
	(ii)	seria	al-to-parallel converter (accept series-to-parallel conve	rter) E	31 [[1]
	(b) (i)	enal	bles one aerial to be used for transmission and receipt	of signals A	\1 [[1]
	(ii)		its for one number arrive at one time are sent out one after another		31 31 [[2]